


- as x approaches 2 from the left, the numerator approaches 6, and the denominator approaches 0 through negative values: $\lim_{x\to 2^+} \frac{x+4}{x-2} = -\infty$
- as x approaches 2 from the right, the numerator approaches 6, and the denominator approaches 0 through positive values: $\lim_{x\to 2^+} \frac{x+4}{x-2} = \infty$
- the $\lim_{x\to 2} \frac{x+4}{x-2}$ does not exist
- the function has a vertical asymptote at x = 2

You try:

- $\lim_{x \to 3} \frac{x+1}{x-3}$
- $\lim_{x \to -1} \frac{x}{(x+1)^2}$

- $\lim_{x \to 5} \frac{3x}{x 5}$
- $4. \qquad \lim_{x \to 0} \frac{x 5}{x^4}$

Limits 3 Mathematics 3208

Limits 4 Mathematics 3208