\qquad

Part A: Multiple Choice (15 marks)

1. The function $y=f(x)$ is transformed to $y=f(x+3)$. How is the image transformed?
A) translated 3 units to the right of $y=f(x)$
B) translated 3 units above $y=f(x)$
C) translated 3 units below $y=f(x)$
D) translated 3 units to the left of $y=f(x)$
2. The graphs of $y=f(x)$ and $y=g(x)$ are shown below. Which mapping rule would map $y=f(x)$ onto $y=g(x)$?
A) $(x, y) \rightarrow(x+2,-2 y-1)$
B) $(x, y) \rightarrow(x-2,-2 y-1)$
C) $(x, y) \rightarrow(x+2,-2 y+2)$
D) $(x, y) \rightarrow(x-2,-2 y+2)$

3. If y is replaced by $\frac{1}{2} y$ in the equation $y=f(x)$, the graph of $y=f(x)$ will be stretched
A) horizontally by a factor $\frac{1}{2}$
B) vertically by a factor of 2
C) horizontally by a factor of 2
D) vertically by a factor of $\frac{1}{2}$
\qquad 4. Given the graph of $y=f(x)$ below, what would the image point of $(3,0)$ be for the transformed graph $y=f(-x)$?

A) $(-3,0)$
B) $(0,3)$
C) $(3,0)$
D) $(0,-3)$
\qquad 5. The graph of $y=f(x)$ is reflected in the x-axis, horizontally stretch by a factor of 2 , translated 3 units to the left, and 1 unit down. What is the equation of the transformed graph?
A) $y=-f\left(\frac{1}{2}(x-3)\right)-1$
B) $y=-f\left(\frac{1}{2}(x+3)\right)-1$
C) $y=-f(2(x-3))-1$
D) $y=-f(2(x+3))-1$
\qquad 6. What is the mapping rule when $y=f(x)$ is transformed to $y=2 f(-(x+1))-4$?
A) $(x, y) \rightarrow(x-1,2 y-4)$
B) $(x, y) \rightarrow\left(-x-1, \frac{1}{2} y+4\right)$
C) $(x, y) \rightarrow(-x-1,2 y-4)$
D) $(x, y) \rightarrow\left(x-1, \frac{1}{2} y+4\right)$
\qquad 7. Which 2 functions are inverses of each other?
$f(x)=\frac{x+6}{4}$
$g(x)=\frac{x-6}{4}$
$h(x)=4 x-6$
A) f and g
B) f and h
C) g and h
D)none are inverses
\qquad 8. What is the new equation if graph A is transformed to graph B ?

A) $x=f(y)$
B) $x=-f(y)$
C) $y=-f(x)$
D) $y=f(-x)$
\qquad 9. The graph of $y=f(x)$ contains the point (3,4). Which of the following equations describe the transformations whereby $(3,4) \rightarrow(5,5)$?
A) $y+1=f(x+2)$
B) $y+1=f(x-2)$
C) $y-1=f(x+2)$
D) $y-1=f(x-2)$
4. Which of the following transformations to the graph of $y=f(x)$ would have the x-intercepts as invariant points?
A) $y=f(x)+2$
B) $y=f(x+2)$
C) $y=f-(x)$
D) $y=-f(x)$
5. What is the equation of the inverse function for $y=x^{2}+1, x \geq 0$?
A) $y=1+\sqrt{x}$
B) $y=1-\sqrt{x}$
C) $y=\sqrt{x-1}$
D) $y=\sqrt{x+1}$
6. The function $y=f(x)$ is transformed to $y=2 f(x-3)$. If the original domain is $\{x /-4 \leq x \leq 2, x \in R\}$, what is the domain of the transformed function?
A) $\{x /-7 \leq x \leq 2, x \in R\}$
B) $\{x /-1 \leq x \leq 5, x \in R\}$
C) $\{x /-8 \leq x \leq 4, x \in R\}$
D) $\{x /-2 \leq x \leq 1, x \in R\}$
7. What are the zeros of the function $y=f(x)$ after the transformation $y=f\left(-\frac{1}{2} x\right)$?
(A) $\quad\{-8,4\}$
(B) $\quad\{-4,8\}$
(C) $\quad\{-2,1\}$
(D) $\quad\{-1,2\}$

_14. Given the graph of $y=f(x)$, which of the following represents the graph of $y=f(-x-6)$?

A)

B)

C)

D)

_15. What is the line of reflection if graph A is transformed to graph B ?
A) $y=x$
B) $y=0$
C) $x=0$
D) $y=-x$

Part B: Long answer questions. Show all workings to receive full marks. (14 marks)
16. Given $y=f(x)$, state the mapping rule and sketch $y=-\frac{1}{2} f(2 x+4)+1$. (4 marks)

Mapping Rule: \qquad
17. Graph B is a transformation of graph A . Determine the equation of graph B in the form $y=a f(b(x-h))+k .(5$ marks $)$

18. Restrict the domain of the function $f(x)=\frac{1}{2}(x+1)^{2}+4$ so that it's inverse will also be a function. Find the inverse equation and state its domain. (5 marks)

