Math 2201 Review (2013 Sample/2013 Exam)

$\frac{y \operatorname{tin} A}{a}=\frac{y \operatorname{tr} E}{b}=\frac{y \sin C}{c}$	$\alpha^{2}=\delta^{2}+\varepsilon^{2}-2 \delta \operatorname{segs} A$	$\zeta \sigma S N=\frac{\delta^{2}+\varepsilon^{2}-a^{2}}{2 b c}$
$\sigma=\sqrt{\frac{\sum(x-)^{2}}{m}}$	$z=\frac{x-\mu}{\sigma}$	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

2013 Sample Exam

Selected Response: Choose the appropriate response on the answer sheet or SCANTRON.

1. Lisa draws four parallelograms and measures all sides. She writes the statement "The opposite sides of a parallelogram are equal" in her notebook. Which term best describes her statement?
(A) conjecture
(B) counterexample
(C) deductive reasoning
(D) inductive reasoning
2. What is the missing seventh term in the given sequence?
$\left\{\begin{array}{llllllll}\mathbf{1}_{r} & \mathbf{1}_{r} & \mathbf{2}_{r} & \mathbf{B}_{r} & \mathbf{S}_{r} & \mathbf{B}_{r} & \mathbf{I}_{r} & 21\end{array}\right\}$
(A) 11
(B) 12
(C) 13
(D) 14
3. Which figure is a counterexample to the statement below? "The perimeter of a rectangle is never an odd number."
(A)

(B)

(C)

(D)

4. If $\angle 1=\angle 2$ and $\angle 1=\angle 8$, which property proves that $\angle 2=\angle 8$?
(A) commutative
(B) supplementary angles
(C) transitive
(D) vertically opposite angles
5. What is the sum of the interior angles of a convex polygon with 14 sides?
(A) 2160^{*}
(B) 2340°
(C) $\quad 2520^{\circ}$
(D) 2880°
6. An incorrect solution is provided to the question below. In which step did the first error occur?

Question: \quad Given $C H \| E Q$ and $\angle 1=120^{\circ}$, what is the measure of $\angle 77$

Solution: $\quad 5 \operatorname{tep} 11 \angle 1=\angle 8$
Step $21 \angle 3=\angle 6$
Step $31 \angle 7=180^{\circ}-\angle 6$
Stepi $47=180^{\circ}-120^{\circ}=60^{\circ}$
(A) 1
(B) 2
(C) 3
(D) 4
7. What is the length of side b ?

(A) 8.9
(B) 11.1
(C) 18.7
(D) $\quad 25.3$
8. Which expression is equal to $\sin \phi$?
(A) $\frac{a}{r \sin R}$
(B) $\frac{r}{q \sin R}$
(C) $\frac{q \operatorname{straR}}{r}$
(D) $\frac{r \sin R}{q}$
9. Simplify completely: $\quad 12 \sqrt{40}-7 \sqrt{10}$
(A) $\quad 5 \sqrt{30}$
(B) $17 \sqrt{ } 10$
(C) $19 \sqrt{30}$
(D) $41 \sqrt{10}$
10. Simplify completely:

$$
\frac{5 \sqrt{15}}{2 \sqrt{\kappa}}
$$

(A) $\frac{B_{3} \sqrt{10}}{4}$
(B) $\frac{15 \sqrt{I T}}{4}$
(C) $\frac{5 \sqrt{90}}{12}$
(D) $\frac{10 \sqrt{90}}{24}$
11. Simplify completely: $\sqrt{27 x^{2}}$
(A) $\quad 8 \sqrt{8}$
(B) $\quad 3 \pi^{2} \sqrt{3}$
(C) $\quad 9 \times \sqrt{8}$
(D) $\quad 9 x^{2} \sqrt{3}$
12. Write $2 y \sqrt[3]{3 y}$ as an entire radical.
(A) $\sqrt[8]{12 \gamma^{2}}$
(B) $\sqrt[3]{24 y^{-8}}$
(C) $\sqrt[8]{24 y^{4}}$
(D) $\quad \sqrt[5]{54 y^{4}}$
13. Brad was asked to simplify $2 \sqrt[5]{64 x^{5}}$ but did not complete a correct solution. Which step contains his first error?

```
Solution: \(\quad\) Step 1: \(2 \cdot \sqrt[7]{64} \cdot \sqrt[3]{x^{a}}\)
Step 2: \(2 \cdot 8 \cdot \sqrt[3]{x^{3}} \cdot \sqrt[2]{x^{2}}\)
Step 3: \(2 \cdot 8 \cdot x \cdot \sqrt[5]{x^{2}}\)
Strep 4i \(18 x \sqrt[8]{x^{2}}\)
```

(A) 1
(B) 2
(C) 3
(D) 4
14. What are the restrictions on the variable for $\frac{1}{\sqrt{x-1}}$?
(A) $\quad x \leq 1$
(B) $\quad x \geq 1$
(C) $x<1$
(D) $\quad x>1$
15. Which set of data has the lowest standard deviation?
(A) \quad @ $0.1,0.2,0.3,0.4,0.5\}$
(B) $\{3.5,3.6,3.7,3.8,3.9\}$
(C) $\quad 4,4,5,5,6\}$
(D) $\{9,9,9,9,9\}$
16. The ages of participants in a curling bonspiel are normally distributed with a mean of 45 years and a standard deviation of 9 years. What percent of the curlers are between 36 and 54 years of age?
(A) 34%
(C) 95%
(B) 68%
(D) 99\%
17. The heights of all students in a class were measured. It was later discovered that the tape measure used was inaccurate and 5 mm had to be added to each person's height. Which calculation would stay the same based on the new height measures?
(A) central tendency
(B) mean
(C) median
(D) standard deviation
18. What are the domain and range for $y=3(x-1)^{2}+4$?
(A) $x \in R$ and $y \leq 4$
(B) $x \in R$ and $y \geq 4$
(C) $x \leq 1$ and $y \in R$
(D) $x \geq 1$ and $y \in R$
19. A quadratic function has an x -intercept at $(7,0)$ and an axis of symmetry at $\boldsymbol{x}=\mathbf{- 1}$. What is the other x -intercept?
(A) $(-13,0)$
(B) $\quad(-4,0)$
(C) $\quad(5,0)$
(D) $\quad(9,0)$
20. If $(-1,3)$ is the vertex of $y=2 x^{2}+\Delta x+5$, what is the value of \boldsymbol{b} ?
(A) -12
(B) $\quad-4$
(C) 4
(D) 12
21. The function $\gamma=x^{2}+6 x+1$ has an axis of symmetry at $x=-\mathbf{3}$. Which graph best models this function?
(A)

(B)

(C)

(D)

22. Which represento a quadratic function with no x-intercepts?
(A)

(B) $\quad y=-(x-1)^{6}+8$
(C) $y=(x+9)^{2}-9$
(D) $\quad y=(x+1)^{2}+3$
23. A gardener has 120 m of fencing to mark off a rectangular vegetable garden. Which function could be used to determine the dimensions that will result in the maximum area?

(A) $\quad A=x(x-60)$
(B) $\quad A=x(x-120)$
(C) $\quad A=x(60-x)$
(D) $\quad A=x(120-x)$
24. Which function has zeros of $\mathbf{- 3}$ and $\mathbf{7}$?
(A) $\quad f(x)=(x-8)(x-7)$
(B) $\quad f(x)=(x-3)(x+7)$
(C) $\quad f(x)=(x+3)(x-7)$
(D) $\quad f(x)=(x+3)(x+7)$
25. What are the roots of the quadratic equation $x^{5}+6 x-16=0$?
(A) $x=-8, x=-2$
(B) $\quad x=-6, x=2$
(C) $\quad x=8, x=-2$
(D) $\quad x=8, x=2$
26. Which has a unit rate of $\$ 0.16 /$ apple?
(A) 20 apples for $\$ 3.00$
(B) 25 apples for $\$ 4.25$
(C) 30 apples for $\$ 4.95$
(D) 35 apples for $\$ 5.60$

1
27. The pentagon shown is transformed by a scale factor of $\overline{\mathbf{4}}$. What is the length of the image of side AB?

(A) 3 cm
(B) 9 cm
(C) 15 cm
(D) 48 cm
28. A partially inflated heart-shaped balloon is 15 cm wide and has a volume of $1600 \mathrm{~cm}^{3}$. If air is added until the balloon is 30 cm wide, what is the new volume?
(A) $3200 \mathrm{~cm}^{3}$
(B) $6400 \mathrm{~cm}^{3}$
(C) $9600 \mathrm{~cm}^{3}$
(D) $12800 \mathrm{~cm}^{3}$

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.
29. Use both inductive and deductive reasoning to show that the sum of two odd

4 marks integers is an even number.

Inductive Reasoning Deductive Reasoning
30. Find the measure of each indicated angle. Justify your answer.

3 marks

31. Use either a paragraph or two-column format to complete the given proof:

32. Peter uses exactly 100 m of string to stake out the triangular plot shown in his back garden. Find the measures of all three angles, to the nearest degree.

33. Simplify: $(8 \sqrt{2}-\sqrt{10})^{8}$
34. State the restrictions on x, solve the equation, and check for extraneous roots.
$4-\sqrt{2 x+1}=9$
35. In a pre-election survey in St. John's, 32% of those surveyed were undecided about their choice for mayor. The survey is considered accurate within 8 percentage points, 99 times out of 100 . If there are 102000 eligible voters in St. John's, state the range of the number of people who are undecided and the confidence level.
36. A manufacturer produces tires that have an average thickness of 179 mm , with a

3 marks standard deviation of 0.9 mm . To be classified as "supreme quality", tires must have a thickness between 177.8 mm and 180.7 mm . What percent, to the nearest whole number, of the total production can be rated as "supreme quality" tires?
37. A model rocket is launched from its launch pad which is 15 m above the ground. It takes 2 seconds for the rocket to reach a maximum height of 35 m .

Algebraically determine the quadratic function in the form $y=a(x-\boldsymbol{h})^{2}+k$, that models the path followed by the rocket, and use it to determine the height of the rocket at 3.5 s .
38. Algebraically determine the vertex and x-intercepts for the function $y=-x^{4}-4 x+5$. Sketch the graph, labelling all key points.
39. Solve the given equation. State the solution(s) in exact form. 3 marks $12 x=-5 x^{2}-1$
40. Use a quadratic function to model and solve the given problem:

A landscaper is designing a $6 m$ by $5 m$ rectangular garden that will then be surrounded by a uniform border of crushed stone. She has enough crushed stone to cover $72 m^{8}$. What is the width of the border if she uses all of the crushed stone?

2013 Exam

Selected Response: Choose the appropriate response on the answer sheet or SCANTRON.

1. What is a statement that is believed to be true but not yet proven?
(A) Conjecture
(B) Counterexample
(C) Deductive Reasoning
(D) Inductive Reasoning
2. Which is a counterexample to the statement "The sum of two consecutive integers is always greater than each of the two integers"?
(A) $\quad-4+(-5)=-9$
(B) $\quad 4+(-5)=-1$
(C) $\quad-4+5=1$
(D) $4+5=9$
3. How many circles are in the $5^{\text {th }}$ diagram in the sequence below:

(A) 9
(B) 10
(C) 14
(D) 15
4. If two non-parallel lines are cut by a transversal, which pair of angles is always equal?
(A) Alternate Interior
(B) Corresponding
(C) Supplementary
(D) Vertically Opposite
5. A student was asked to find the measure of $\angle \mathbf{1}$. In which step did he make the first error?

Solution	Step 1:	$\angle 3=180^{\circ}-115^{\circ}$
	Step 2:	$\angle 3=65^{\circ}$
	Step 3:	$\angle 1=\angle 3$
	Step 4:	$\angle 1=65^{\circ}$

(A) 1
(B) 2
(C) 3
(D) 4
6. How many sides does a convex polygon have if the sum of its interior angles is 1440^{*} ?
(A) 4
(B) 6
(C) 8
(D) 10
7. What is the measure of $\angle C$?

8. Which equals the measure of $\angle A$?

(A)
$\operatorname{coa}^{-1}\left(\frac{5^{2}+9^{5}-7^{2}}{2(5)(9)}\right)$
$\cos ^{-1}\left(\frac{7^{2} 15^{2}-0^{2}}{2(7)(5)}\right)$
(C)

$$
\cos ^{-1}\binom{9^{2}+5^{2}-7^{2}}{2(9)(5)}
$$

(D)

$$
\cos _{\mathrm{c}}-1\left(\frac{9^{2}+7^{2}-\mathrm{g}^{2}}{2(9)(7)}\right)
$$

9. Simplify completely: $\quad 5 \sqrt{2}+3 \sqrt{2 \Omega}$
(A) $11 \sqrt{7}$
(B) $17 \sqrt{7}$
(C) $11 \sqrt{14}$
(D) $\mathbf{8 \sqrt { 3 }} 3$
10. Simplify completely: $\quad \sqrt[3]{-8 x^{17}}$
(A) $-2 x^{2} \sqrt[5]{x^{E}}$
(B) $\quad-2 x^{\text {E }} \sqrt[5]{x^{2}}$
(C) $\quad 2 x \sqrt[5]{-2 x^{8}}$
(D) $\quad 2 x^{2} \sqrt[5]{-2 x}$
11. Write $3 x^{5} \sqrt{5 x}$ as an entire radical.
(A) $\sqrt{15 x^{4}}$
(B) $\sqrt{15 x^{7}}$
(C) $\sqrt{45 x^{4}}$
(D) $\sqrt{45 x^{7}}$
12. A student was asked to simplify $\frac{x \sqrt{18 X^{8}}}{8}$ but did not complete a correct solution. Which step contains her first error?

Solution: \quad Step 1: $\quad \frac{x \sqrt{9 \cdot 2 \cdot x^{2} \cdot x}}{3}$

$$
\text { Step 2: } \quad \frac{x \cdot 9 X^{2} \sqrt{2 x}}{8}
$$

$$
\text { Step 3: } \quad \frac{\mathbf{e x} \sqrt{2 \pi}}{3}
$$

$$
\text { Step 4: } \quad 3 x^{5} \sqrt{2 x}
$$

(A) 1
(B) 2
(C) 3
(D) 4
13. Simplify completely: $\frac{\frac{5}{32}}{2 \sqrt{8}}$
(A) $\frac{1 D \sqrt{6}}{3}$
(B) $\frac{4 D \sqrt{6}}{8}$
(C) $\frac{5 \sqrt{96}}{6}$
(D) $\frac{10 \sqrt{96}}{12}$
14. What are the restrictions on the variable for $\sqrt{x+2}$?
(A) $\quad x \geq-2$
(B) $\quad x=-2$
(C) $x 22$
(D) $\quad x>2$
15. Which represents data with the largest standard deviation?
(A)

(B)

(C)

(D)

16. The histogram shown represents the heights of hockey players on a professional hockey team. How many players have a height between 1.8 m and 2.0 m ?

Heights of Hockey Players

(A) 10
(B) 18
(C) 24
(D) 28
17. A set of data is normally distributed. What percent of the data is within two standard deviations of the mean?
(A) 47.5
(B) 68
(C) 95
(D) 99.7
18. The function $y=-8 x^{2}-12 x-18$ has axis of symmetry $x=-2$. Which represents
the function?
(A)

(B)

(C)

(D)

19. What is the domain and range for $f(x)=-2(x+1)^{2}-3$?
(A) $\quad x \in \mathbf{R}$ and $f(x) \leq-3$
(B) $\quad x \in \mathbf{R}$ and $f(x) 2-8$
(C) $x \leq-1$ and $f(x) \in \mathbf{x}$
(D) $\quad x 2-1$ and $f(x) \in \mathbf{R}$
20. A parabola has x-intercepts of $(-2,0)$ and $(-8,0)$. What is the axis of symmetry?
(A) $\quad x=-5$
(B) $\quad x=-3$
(C) $y=-5$
(D) $y=-8$
21. What is the vertex of $y=2 x^{2}+8 x-5$?
(A) $\quad-2_{z}-29$)
(B) $\quad-2,-13$,
(C) $\quad(2,15)$
(D) $\quad(2,19)$
22. The graph of a quadratic function has vertex $(1,-4)$ and opens upward. How many xintercepts does it have?
(A) 0
(B) 1
(C) 2
(D) 3
23. What is the equation of the function graphed below?

(A) $y=(x-1)(x-3)$
(B) $\quad y=(x-1)(x+3)$
(C) $y=(x+1)(x-3)$
(D) $\quad y=(x+1)(x+3)$
24. Which is a root of $\mathbf{2} x^{2}-\mathbf{5} x-3=0$
(A) $\mathbf{- 3}$
(B) -1
(C) 1
(D) 3
25. Which represents a quadratic function with zeros of $\mathbf{- 2}$ and $\mathbf{4}$ and a maximum value?
(A)

(B)

(C)

(D)

26. What is the scale factor in the figure below?

(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) 2
(D) 3
27. During which time period was the growth rate of $C D$ sales the greatest in the graph shown?

(A) $2000-2001$
(B) 2001-2002
(C) 2002-2003
(D) 2003-2004
28. The surface area of a cone is $34 \mathrm{ft}^{2}$. If the cone is enlarged by a scale factor of 3 , what is the surface area, in $f t^{4}$, of the image?
(A) 37
(B) 102
(C) 306
(D) 918

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.
29. Use both inductive and deductive reasoning to show that the result for the given [4 marks] number trick will always be the original number.

NUMBER TRICK Inductive Reasoning Deductive Reasoning
Choose a number.
Double it. \qquad
\qquad

Add 6. \qquad
\qquad

Double it \qquad
\qquad

Subtract 4. \qquad
\qquad
Divide by 4. \qquad
\qquad
Subtract 2. \qquad
30. Find the measure of each indicated angle. Justify your answer.

31. Use either a paragraph or two-column format to complete the given proof:
[3marks]

Given:	AB II DE
	$\mathrm{AC}=\mathrm{EC}$
Prove:	$\Delta \mathrm{ABC} \cong \triangle \mathrm{EDC}$

32. A boat travels from Bell Island to Kelly's Island to Little Bell Island, and returns
[4 marks] directly back to Bell Island. What is the total distance travelled?

33. Simplify completely: $\quad 5 \sqrt{6}(\sqrt{3}+3 \sqrt{12}-\sqrt{2})$
34. State the restrictions on x, solve the equation, and then check for extraneous roots.

$$
\sqrt{3 x+1}-3=-4
$$

35. A factory produces automotive brake pads with a mean mass of 174 g and a standard deviation of 0.7 g . Quality control expects that the mass of the pads will lie within the acceptable range of 173.9 g and 174.1 g . What is the confidence interval and margin of error this factory uses for its quality control tests?
36. Jason scored 82% on a test where the class average was 74% and the standard deviation was 10.6%. If the class was normally distributed, what percentage of the class scored better than Jason?
37. A farmer has 300 mm of chain link fencing to create a rectangular pen, using the side of a barn as one side of the pen. Algebraically determine the maximum area that can be enclosed by the pen.

38. Algebraically determine the vertex and \mathbf{x}-intercepts for the function
$y=x^{\mathbf{2}} \mathbf{- 2} x-\mathbf{8}$. Sketch the graph, labelling all key points.
39. Solve the given equation. State the solution(s) in exact form.
```
0 (2 = -4x+3
```

40. On another planet, the path of a rock that is thrown is given by time(s) would the height of the rock be $9 m$?
