Key

Mathematics 1201 Common Mathematics Assessment

June 12, 2013

Name: Mathematics Teacher:		23
28 Selected Response 13 Constructed Response		28 marks 42 marks
FINAL		70 Marks

FORMULAE

Surface Area

Cylinder $2\pi r^2 + 2\pi rh$	Cone $\pi r^2 + \pi rs$	Sphere $4\pi r^2$
2M1" + 2M1M	nr- + nrs	487

Volume

Pyramid 1 -Ah	Cone 1 7 7 7	Sphere
$\overline{3}^{Ah}$	$\overline{3}^{\pi r^2 h}$	$\frac{3}{3}\pi r^2$

Conversions

1 foot = 12 inches	1 yard	= 3 feet	1 mile = 1760 yards
1 inch = 2.54 centimetres = 2.5 centimetres		1 m	ile = 1.6 kilometres

1201 Common Mathematics Assessment - June 2013 Answer Sheet

Name		
Mathematics Teacher:	1	

1.	Α	В	C	(D)
2.	A	В	©	D
 3. 4. 6. 	(Λ)	В	С	D D
4.	(A)	В	C	D
5.	Ā	B	С	D
6.	Α	B	С	D
7.	Α	В	- O O O - O O	D
8.	A	В	C	D
9.	A	B	C	1
10.	A	В	©	D
11.	A	В	C	D
12.	A	В	(C)	D
13.	Λ	В	(C)	D
14.	(A) A A A A A A A A A A A A	В	00000	D
15.	$\langle \Lambda \rangle$	В	C	D
16.	Α	В	С	(b) (d)
17.	Α	В	С	(D
18.	A	В	С	D
19.	Λ	B	C	D
20.	Λ	В	С	(D)
21.	\bigcirc	В	C	D
22.	A	В		D
23.	A	B	C	D
24.	A A A	В	С	(
25.	A	В	©	D
26.	٨	В	С	D
27.	A	$^{\mathbb{B}}$		(D) D (D) D
28.	(A)	В	С	D

Selected Response:

Circle the appropriate response on the answer sheet or SCANTRON.

- Which is the best referent for one centimetre?
 - distance from the floor to a door knob (A)
 - (B) length of a five-dollar bill
 - (C)thickness of a dime
 - width of a paper clip (D)
- What is the slant height of a cone with diameter 12 mm and height 17 mm?

- 3. What is 19.75 yards in yards, feet, and inches?
 - 19 yards, 2 feet, 3 inches
 - 19 yards, 2 feet, 6 inches
 - 19 yards, 2 feet (C)
 - (D) 19 yards, 9 inches

- 0.75 x 3 = (2).25
- 0.25 x 12 = (3)
- What is the adjacent side to ∠DAC?

- (C) CA
- (D) DC

5. What is the measure of $\angle A$, to the nearest degree, if $\tan A = 0.8725$?

(A)	_34°
(B)	41°
पि	49°
נחו	619

6. Which ratio represents $\sin B$?

- 7. What is the length of side MA to the nearest tenth?
 - 2.0 (A)
 - (B) 2.2
 - 3.9

8. Simplify:

6 ∛3

₹108

- 36 ₹3 (D)
- 9. Which statement is true about 36007
 - It is a perfect cube. (A)
 - (B) Its only factors are 360 and 10.
 - Its square root is an irrational number. (C)
 - Its prime factorization is $2^4 \cdot 3^2 \cdot 5^2$.
- What is $\sqrt[3]{5^2}$ expressed as a power? 10.

- A student did not receive full marks for her solution to the question below. In which step did she make the first error?

Simplify:

$$\frac{(a^{-2}b^7)^{-5}}{(a^2b^{-3})^3}$$

Solution:

Step 1:
$$\left(\frac{a^{-7}b^2}{a^5b^0}\right)$$

Step 2:

$$a^{-7-5}b^{2-0}$$

Step 3:

$$a^{-12}b^2$$

Step 4:

$$\frac{b^2}{-a^{12}}$$

Which binomial product is modelled?

Note: = negative = positive

(A)
$$(-2x+3)(-x+2)$$

(B)
$$(-2x+3)(x+2)$$

(C)
$$(2x-3)(x+2)$$

(D)
$$(2x-3)(x-2)$$

13. Expand and simplify: (a-3b)(2a-b)

(A)
$$2a^2 + 3b^2$$

(B)
$$3a = 4b$$

(C)
$$2a^2 - 7ab + 3b^2$$

(D)
$$3a^2 - 6ab - 4b^2$$

2a2-ab-6ab+3b2

What is the greatest common factor of $16x^2y^3$, $8x^3y^2$, and $-24x^3y^3$?

(A)
$$4x^2y^2$$

(B)
$$4x^3v^3$$

(D)
$$8x^3v^3$$

(D)
$$8x^3y^3$$

822y2

15. Factor completely:
$$x^2 - 6x + 5$$

(A)
$$(x-1)(x-5)$$

(C)
$$(x-1)(x+5)$$

(D)
$$(x+6)(x-1)$$

Factor completely: $4x^2 - 36$ 16.

(A)
$$2(2x^2-18)$$

(B)
$$4(x^2-9)$$

(C)
$$(2x-6)(2x+6)$$

(D) $4(x-3)(x+3)$

What is the missing value if the given polynomial is a perfect square trinomial?

$$25x^2 + [?] + 16$$

(C)
$$\frac{20x}{40x}$$

Mathematics 1201 Common Mathematics Assessment - June 2013

- If the amount of gas remaining in your gas tank is affected by the distance travelled, what is the dependent variable?
 - the amount of gas in your tank (A)
 - (B) the amount of time
 - (C) the cost of gas
 - the distance travelled (D)
- Which set of ordered pairs represents a function?
 - $\{ (-3,-8) \ , \ (-1,-7) \ , \ (-2,-6) \ , \ (-1,-5) \}$ $\{ (-8,0) \ , \ (-6,5) \ , \ (4,-1) \ , \ (7,0) \}$

 - $\{(4,1), (4,2), (3,4), (4,4)\}$ (\overline{C})
 - $\{(2,5), (3,8), (4,11), (2,1)\}$ (D)
- The graph describes Mackenzie's activity during a bike ride. What does segment EF represent?

- (A) Mackenzie stops at a friend's house.
- (B) Mackenzie rides downhill.
- Mackenzie leaves home. (C)
- Mackenzie returns home. (D)
- What is the domain of the function shown?

- (B) $\{x \mid -3 \le x \le 3, x \in \mathbb{R}\}$
- (C) $\{y \mid 0 \le y \le 3, y \in \mathbb{R}\}$
- $\{y \mid -3 < y \le 0, y \in \mathbb{R}\}$ (D)

What is the rate of change in the given table?

(A)	1 5
(B)	1

- 2
- (C) 2
- (D) 5

d	C(d)		
0	75	1+2	
10	77	/ ' -	
20	79		
30	81	_	
40	83	=	=
	0 10	0 75 10 77 20 79 30 81	0 75 10 77 20 79 30 81

2	=	T
		_
10		2

23. What is the equation of the line graphed?

- (A) $y = -\frac{3}{2}x + 2$
- (B) $y = -\frac{3}{2}x + 3$
- (C) $y = -\frac{2}{3}x + 2$
- (D) $y = -\frac{2}{3}x + 3$
- 24. What is the slope of a line **perpendicular** to $y = -\frac{1}{7}x + 5$?
 - (A) -7
 - (B) $-\frac{1}{7}$
 - •
 - $(C) \qquad \frac{1}{7}$ $(D) \qquad 7$
- 25. What is the equation of the line, in slope-point form, that has slope $\frac{4}{5}$, and passes through the point (9,-1)?
 - (A) $y-1=\frac{4}{5}(x+9)$
 - (B) $y-1=\frac{5}{4}(x+9)$
 - (C) $y+1=\frac{4}{5}(x-9)$
 - (D) $y+1=\frac{5}{4}(x-9)$
- 26. What is the expression for the slope between points (a,b) and (c,d)?
 - $(A) \qquad \frac{a-b}{c-d}$

<u>d-b</u>

(B) $\frac{a-c}{b-d}$

c-a

- (C) $\frac{c-d}{a-b}$
- $(D) \frac{d-b}{c-a}$

Which system models the given situation?

A collection of nickels (n) and dimes (d) contains four times as many dimes as nickels. The total value of the collection is \$20.25.

(A)
$$\begin{cases} d = 4n \\ 0.05d + 0.10n = 20.25 \end{cases}$$
(B)
$$\begin{cases} d = 4n \\ 0.10d + 0.05n = 20.25 \end{cases}$$

(C)
$$\begin{cases} n = 4d \\ 0.05n + 0.10d = 20.25 \end{cases}$$

(D)
$$\begin{cases} n = 4d \\ 0.10n + 0.05d = 20.25 \end{cases}$$

How many solutions does the given system have?

$$y = \frac{4}{6}x + 8$$

$$y = \frac{2}{3}x + 4$$

$$y = \frac{2}{3}x + 8$$

$$y = \frac{2}{3}x + 8$$

$$y = \frac{2}{3}x + 8$$

	-
$(A)_{\perp}$	none
(B)	one

(C) two

(D) infinite

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.

29. A shed is constructed by using a rectangular prism for the walls with a triangular prism for the roof. Determine the surface area of the Shed to the nearest square foot. (Do not include the shed floor.)

$$2 = x$$

$$2 = x_3 \quad ()$$

Rectangular

Front =
$$6 \times 8 = 48$$

Bock = 48

Right = $10 \times 8 = 80$

Left = 80

Triangular

Front =
$$\frac{b \times h}{2} = \frac{b \times 4}{2} = 12$$

Back = 12

Right = $10 \times 5 = 50$

Left = 50

(4 points)

① Back =
$$12$$

Right = $10 \times 5 = 50$
Left = 50

①
$$SA = 2(48) + 2(80) + 2(12) + 2(50) = 380 ft^2$$

30. A right square pyramid has a volume of 182.4 cm3. Determine the side length of its (2 points) base to the nearest cm.

$$V = \frac{lwh}{3}$$

$$182.4 = x \cdot x \cdot 15.2 \left(\frac{1}{2}\right)$$

$$3 \cdot \frac{182.4}{15.2} = x^{2} \left(\frac{1}{2}\right)$$

$$36 = x^{2} \left(\frac{1}{2}\right)$$

$$\sqrt{36} = x$$

$$6 = x^{2} \left(\frac{1}{2}\right)$$

31. From the top of a 50 m building, an observer spots two joggers. The first jogger is at an angle of depression of 45° and the second is at an angle of depression of 30°. How far apart (to the nearest tenth of a metre) are the two joggers?

$$\tan 30^\circ = \frac{50}{y}$$

$$2 = \frac{50}{\tan 45^\circ} = \frac{50}{2}$$

$$\chi = \frac{50}{\tan 45^{\circ}} = \frac{50}{(\frac{1}{2})}$$
 $y = \frac{50}{\tan 30^{\circ}} = 86.6 (\frac{1}{2})$

32. A polling organization uses the telephone book to randomly select people for a survey. They choose every 20th person to ask question #1, every 28th person to ask question #2, and every 30th person to ask question #3. In which position in the phone book is the first person to be asked all three questions?

[3 points]

 $LCM = 2^{2}.5.7.3 = 420 \text{ }$

The 420th person is the first one to be asked all 3 questions.

Page 8 of 11 Eastern School District 33. The area of a square is $121x^4y^2$. What is the expression for the perimeter of the

[2 points]

34. Simplify: $\left(\frac{-54x^6y}{2x^{-3}v^4}\right)^{\frac{1}{3}}$

[4 points]

$$0 = (3-27)^{4} (x^{12}) (y^{-4})$$

$$(\frac{1}{2}) = (-3)^4 \times 1^3 y^{-4} = \frac{81 \times 1^3}{y^4} (\frac{1}{2})$$

35. Expand and simplify: $(2x-5)(x+7)^2$

[3 points]

$$(\frac{1}{2}) = (2x-5)(x+7)(x+7)$$

$$\int = (2x-5)(x^2+7x+7x+49)$$

$$\begin{cases} = (2x-5)(x^2+7x+7x+49) \\ = (2x-5)(x^2+14x+49) \end{cases}$$

36. Determine the expression, in simplest form, for the area of the shaded region:

[3 points]

Rect. Area = $(3x-2)(2x+1) = 6x^2 + 3x - 4x - 2$ Square Area = $(x+4)(x+4)^2 = x^2 + 4x + 4x + 16$

Shoded Area =
$$(6x^2-x-2)-(x^2+8x+16)=\overline{(5x^2-9x-18)}$$

[3 points]

37. Factor completely:
$$5x^2 - 9x - 18$$
 \oplus \otimes $-9 - 90$ $(5x^2 - 15x) + (6x - 18)$ $-15, 6$ 0 ? $(3x - 3) + 6(x - 3)$ $(3x - 3) + (5x + 6)$ 0 ?

- 38. The cost of printing advertising flyers for a school play is represented by the function C(f) = 0.80f + 10.00, where C is total cost in dollars and f is the number of flyers.
 - a) If C(f) = 86.00, determine the value of f. Explain what this situation means.

$$\frac{1}{2}$$
 86.00 = 0.80 f + 10.00 This means that 86.00 - 10.00 = 0.80 f 95 flyers could be printed for 86.00. $\frac{76.00}{0.80} = \frac{0.80}{0.80}$ printed for 86.00.

b) Does this function represent discrete or continuous data? Explain.

39. Write the equation, in the form Ax + By + C = 0, of the line that passes through the points (4,5) and (-6,10).

$$Slope = \frac{10-5}{-6-4} = \frac{5}{-10} = -\frac{1}{2} \frac{2}{2}$$

$$y = -\frac{1}{3}x + b$$

$$y = -\frac{1}{3}x + 7 \frac{1}{2}$$

$$5 = -\frac{1}{3}(4) + b \frac{1}{2}$$

$$5 = -2 + b$$

$$5 + 2 = b$$

$$7 = b \frac{1}{2}$$

[3 points]

37. Factor completely:
$$5x^2 - 9x - 18$$
 \oplus \otimes $-9 - 90$ $(5x^2 - 15x) + (6x - 18)$ $-15, 6$ 0 ? $(3x^2 - 15x) + (6x - 18)$ $(3x^2 - 15x) + (6x - 15x) + ($

- 38. The cost of printing advertising flyers for a school play is represented by the function C(f) = 0.80f + 10.00, where C is total cost in dollars and f is the number of flyers.
 - a) If C(f) = 86.00, determine the value of f. Explain what this situation means.

$$\frac{1}{2}$$
 86.00 = 0.80 f + 10.00 this means that 86.00 - 10.00 = 0.80 f 95 flyers could be $\frac{76.00}{0.80} = \frac{0.80}{0.80}$ printed for 86.00.

b) Does this function represent discrete or continuous data? Explain.

39. Write the equation, in the form Ax + By + C = 0, of the line that passes through the points (4, 5) and (-6, 10).

$$Slope = \frac{10-5}{-6-4} = \frac{5}{-10} = -\frac{1}{2} \left(\frac{1}{2} \right)$$

$$y = -\frac{1}{3}x + b$$

$$5 = -\frac{1}{3}(4) + b \left(\frac{1}{2} \right)$$

$$3(\frac{1}{3}x + y - 7) = 0$$

$$7 = b \left(\frac{1}{3} \right)$$

$$7 = b \left(\frac{1}{3} \right)$$