Limits and Continuity

Chapter 2

You should be able to:

C1.1 Using informal methods, explore the concept of a limit including one sided limits.

C1.2 Using informal methods, establish that the limit of $\frac{1}{x}$ as x approaches infinity is zero.

The Limit of a Function

If $f(x)$ can be made arbitrarily close to a finite number L by taking x sufficiently close to but different from a number a, from both the left and right side of a, then

$$
\lim _{x \longrightarrow a} f(x)=L
$$

This is read " the limit of f of x, as x approaches a is L "

* The function does not have to be defined at a.

Limits Using Tables

- Consider the function $\quad f(x)=3 x-1$

Determine the behaviour of $f(x)$ as x approaches 2

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$f(x)$							

Determine the behaviour of $f(x)$ as x approaches 1 for the function:

$$
f(x)=\frac{x^{2}+2 x-3}{x-1}
$$

x	0.9	0.99	0.999	1	1.001	1.01	1.1
$f(x)$							

$$
f(x)=\frac{1}{x}
$$

x	-5	-1	-0.5	-0.25	0	0.25	0.5	1	5
$f(x)$									

What value is $f(x)$ approaching as x becomes a larger positive number?

What value is $f(x)$ approaching as x becomes a larger negative number?

Will the value of $f(x)$ ever be zero? Explain...

Homework

- Use a table of values to estimate the limit of each:
- 1. $y=(x+3)^{2} \quad$ as x approaches -1

ロ 2. $y=\frac{2}{x+5} \quad$ as x approaches -5

- 3. Use graphing technology to estimate the the limit of each as x approaches infinity.
(i) $\quad f(x)=\frac{2}{x}$
(ii) $f(x)=\frac{10}{x}$
(iii) $f(x)=\frac{100}{x}$

