Use either
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 or $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

A. Calculate the slope of the tangent line to each of the following curves at the given value.

1.
$$f(x) = 7x - 4x^2;$$
 $x = 2$

2.
$$f(x) = \sqrt{2x+4}$$
; $x=6$

3.
$$f(x) = \frac{2x+1}{3x-1}$$
; $x=1$

B. Calculate the **equation** of the tangent line to each of the following curves at the given point.

1.
$$f(x) = 3x^2 - 1x$$
 at $(1,2)$

2.
$$f(x) = 2x^2 - 5$$
 at (2,3)

3.
$$f(x) = \sqrt{3x+1}$$
 at (5,4)

4.
$$f(x) = \frac{3x+8}{x-4}$$
 at (0,-2)

5.
$$f(x) = \frac{x+5}{3x+2}$$
 at $x = 2$

6.
$$f(x) = \sqrt{x}$$
 at (1,1)

7.
$$f(x) = \frac{1}{\sqrt{x}}$$
 at (1,1)

8.
$$f(x) = \sqrt{4x-3}$$
 at (3,3)

9. Hayes throws an airball into the air with initial velocity of 40 ft/sec. Its height (in feet) after t seconds is given by $h(t) = 40t - 16t^2$. What is the ball's velocity at t = 2 seconds?