Chapter 6 Review: Quadratic Functions

- 1. Which is the vertex for the quadratic function $y = -3(x-5)^2 + 7$?
- (A) (-5,-7) (B) (-5,7) (C) (5,-7) (D) (5,7)
- 2. Which is a quadratic function?

(A) y = 5(x - 3) + 7 (B) $y = 2(x - 3)^2(x + 1)$ (C) $y = 2x^2(x + 1)^2$ (D) y = x(x + 1)

1.

2.

3.

4.

5.

- 3. Which is the y-intercept for the quadratic function f(x) = 4(x-1)(2x+3)?
- (A) 1 (B) -3 (C) -12 (D) 0
- 4. Which represents the range for the graph?

5. Which statement about the quadratic function $y = 5x^2 + 7x - 11$ with vertex (-3, -27) is correct?

- (A) There is a minimum value of -27. (B) There is a minimum value of -3.
- (C) There is a maximum value of -27. (D) There is a maximum value of -3.
- 6. A parabola has x-intercepts at -6 and 2. Which represents the function in Factored Form? 6.
 - (A) y = a(x+6)(x-2) (B) y = a(x-6)(x+2)
 - (C) y = a(x-6)(x-2) (D) y = a(x+6)(x+2)

7. Which is the function in Vertex Form represented by the graph?

8. Which is the equation of the axis of symmetry for the function $y = -3x^2 - 6x + 7$?

(A) x = -1 (B) x = 2 (C) x = 1 (D) x = -2

9. Which represents the number of x-intercepts for the function $y = -\frac{1}{3}(x+3)^2 - 4$. 9.

- (A) 1 (B) 2 (C) 3 (D) none
- 10. The area of a rectangular enclosure is given by the function $A(x) = -5x^2 + 150x$, where x is the width, in meters. What is the width that will produce a maximum area? 10.____
 - (A) 15m (B) 5m (C) 150m (D) 30m

11. The Beatles Fan Club has 6000000 members and charges \$5.00 per month. If the Club raises membership fees by \$1.00 per month they expect 10000 fewer members per month. Which represents the revenue function?

(A)	R = (6000000 + 1x)(5 - 10000x)	(B)	R = (6000000 - 1x)(5 + 10000x)
(C)	R = (6000000 + 10000x)(5 - 1x)	(D)	R = (6000000 - 10000x)(5 + 1x)

12. A farmer constructs a rectangular enclosed fence in an open field using 100m of fencing. Which quadratic function models the maximum area of the enclosed region?

(A)	A(x) = (100 - x)x	(B)	A(x) = (100 - 2x)x
(C)	A(x) = (50 - x)x	(D)	A(x) = (50 - 2x)x

8.

11.____

12.____

Part B: Show all workings to receive full credit. [30 marks]

14. An osprey dives toward the water to catch a salmon. Its initial height above the water is 30 feet.It descends and at 2 seconds it catches a salmon when it is at a height of 1 foot. Determine the quadratic function that models the flight path of the osprey.

[4]

15. A ball is thrown into the air and its height h(t) above the ground, in meters, after *t* seconds is modeled by the function $h(t) = -6t^2 + 24t + 6$.

(A)	What is the initial height of the rocket?	[1]
(B)	What was the height of the ball at 3 seconds?	[2]
(C)	When did the ball reach its maximum height?	[2]
(D)	What was the maximum height of the ball?	[1]

16. Last year, QE charged a \$10 session fee for photos and 400 sessions were booked. This year, the student council estimates that for every \$1 increase in price, they expect to have 20 fewer sessions booked.

(A)	Write a quadratic function to model the maximum revenue for this situation.	[2]
(B)	Determine the maximum revenue.	[3]
(C)	What session fee will give the maximum revenue?	[1]

17. A rectangular region is to be constructed using 300m of fencing and a house as one side.

Wall of House	

(A) Write the quadratic function that models the rectangular region. [2
(B) Determine the width which maximizes the area. [1]
(C) Determine the maximum enclosed area. [2]