Chapter 6 Review: Quadratic Functions

1. Which is the vertex for the quadratic function $y=-3(x-5)^{2}+7$?
2. \qquad
(A) $(-5,-7)$
(B) $\quad(-5,7)$
(C) $(5,-7)$
(D) $(5,7)$
3. Which is a quadratic function?
4.

(A) $y=5(x-3)+7$
(B) $y=2(x-3)^{2}(x+1)$
(C) $y=2 x^{2}(x+1)^{2}$
(D) $y=x(x+1)$
3. Which is the y-intercept for the quadratic function $\mathrm{f}(\mathrm{x})=4(x-1)(2 x+3)$?
3.
(A) 1
(B) -3
(C) -12
(D) 0
4. Which represents the range for the graph?
(A) $y x 9$
(B) $y=12$
(C) $-2 \leq y \leq 6, y \varepsilon R$
(D) $y \varepsilon R$

4. \qquad
5. \qquad
(A) There is a minimum value of -27 .
(B) There is a minimum value of -3 .
(C) There is a maximum value of -27 .
(D) There is a maximum value of -3 .
6. A parabola has x-intercepts at -6 and 2. Which represents the function in Factored Form?
6. \qquad
(A) $y=a(x+6)(x-2)$
(B) $y=a(x-6)(x+2)$
(C) $y=a(x-6)(x-2)$
(D) $y=a(x+6)(x+2)$
7. Which is the function in Vertex Form represented by the graph?
7.

8. Which is the equation of the axis of symmetry for the function $y=-3 x^{2}-6 x+7$?
8. \qquad
(A) $x=-1$
(B) $x=2$
(C) $x=1$
(D) $x=-2$
9. Which represents the number of x-intercepts for the function $y=-\frac{1}{3}(x+3)^{2}-4$. \qquad
(A) 1
(B) 2
(C) 3
(D) none
10. The area of a rectangular enclosure is given by the function $A(x)=-5 x^{2}+150 x$, where x is the width, in meters. What is the width that will produce a maximum area?
10. \qquad
(A) 15 m
(B) 5 m
(C) 150 m
(D) 30 m
11. The Beatles Fan Club has 6000000 members and charges $\$ 5.00$ per month. If the Club raises membership fees by $\$ 1.00$ per month they expect 10000 fewer members per month. Which represents the revenue function?
11. \qquad
(A) $R=(6000000+1 x)(5-10000 x)$
(B) $R=(6000000-1 x)(5+10000 x)$
(C) $\quad R=(6000000+10000 x)(5-1 x)$
(D) $R=(6000000-10000 x)(5+1 x)$
12. A farmer constructs a rectangular enclosed fence in an open field using 100 m of fencing. Which quadratic function models the maximum area of the enclosed region?
12. \qquad
(A) $A(x)=(100-x) x$
(B) $\quad A(x)=(100-2 x) x$
(C) $\quad A(x)=(50-x) x$
(D) $A(x)=(50-2 x) x$

Part B: Show all workings to receive full credit. [30 marks]
13. Given the function $y=-\frac{1}{2}(x+4)^{2}+6$ determine the following information and sketch the graph. [7]
(A) Axis of Symmetry equation: \qquad
(B) Vertex: \qquad
(C) Maximum or Minimum value is \qquad
(D) Y-intercept: \qquad
(E) Domain: \qquad
(F) Range: \qquad

14. An osprey dives toward the water to catch a salmon. Its initial height above the water is 30 feet. It descends and at 2 seconds it catches a salmon when it is at a height of 1 foot. Determine the quadratic function that models the flight path of the osprey.

15. A ball is thrown into the air and its height $\mathrm{h}(t)$ above the ground, in meters, after t seconds is modeled by the function $h(t)=-6 t^{2}+24 t+6$.
(A) What is the initial height of the rocket?
(B) What was the height of the ball at 3 seconds?
(C) When did the ball reach its maximum height?
(D) What was the maximum height of the ball?
16. Last year, QE charged a $\$ 10$ session fee for photos and 400 sessions were booked. This year, the student council estimates that for every $\$ 1$ increase in price, they expect to have 20 fewer sessions booked.
(A) Write a quadratic function to model the maximum revenue for this situation.
(B) Determine the maximum revenue.
(C) What session fee will give the maximum revenue?
17. A rectangular region is to be constructed using 300 m of fencing and a house as one side.

(A) Write the quadratic function that models the rectangular region.
(B) Determine the width which maximizes the area.
(C) Determine the maximum enclosed area.

